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ABSTRACT
With the advances in semiconductor technology, the sizes of tran-
sistors are getting smaller, which has led to an increasingly severe
impact of IR drop. Consequently, this trend has amplified the signif-
icance of IR drop analysis within the realm of chip design. However,
analyzing IR drop is resource-intensive and time-consuming, since
numerous simulation patterns are required to verify the power
integrity of circuits. Additionally, with every engineering change
order (ECO) step, a reevaluation is necessary. In this paper, we
propose a machine learning-based method to predict IR drop levels
and present an algorithm for reducing simulation patterns, which
could reduce the time and computing resources required for IR drop
analysis within the ECO flow. Experimental results show that our
approach can reduce the number of patterns by approximately 50%,
thereby decreasing the analysis time while maintaining accuracy.
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1 INTRODUCTION
With the advances in semiconductor technology, the transistor
dimensions are getting smaller, which has brought some challenges
in IC design, e.g., IR drop issue is a critical problem to be dealt with
before design signoff.

IR drop refers to the voltage drop that occurs when current flows
through the power delivery network (PDN). Unfortunately, IR drop
harms the performance and reliability of the circuit, e.g., slower
circuit operations due to a downgrade in the operating voltage and
rise in chip’s temperature due to increased resistance-generated
heat. Hence, IR drop signoff has become an increasingly critical
step in the design flow.

There are two approaches for analyzing a design’s IR drop levels:
dynamic analysis [9] and static analysis [5, 7]. Dynamic analysis
simulates the circuit with patterns over time and analyzes the volt-
age drop that occurs under the different operations of the circuit.
Hence, it is more computation-intensive and yields more precise
estimations compared with static analysis.

Vector-based dynamic IR drop analysis usually requires signif-
icant time and computing resources due to numerous simulation
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patterns. A pattern refers to a sequence of input vectors used to
simulate a circuit’s behavior over a specified time frame. Analysis
over a 30ns time frame may take up to 6.5 hours with commercial
tools, e.g., Redhawk-SC [1] and Voltus [2]. Thus, having an efficient
approach to IR drop analysis with accurate results is desired.

Several previous works [3, 4, 10, 11, 13–17] estimated IR drop
based on machine learning (ML) techniques. Experimental results
revealed that using ML models to predict IR drop is highly feasible.

In this paper, we also build an ML model to predict the IR drop.
Based on accurate IR drop prediction results, we further introduce
an algorithm aimed at minimizing the number of patterns necessi-
tating simulation. In the current design flow, after completing an
Engineering Change Order (ECO) task, designers need to reanalyze
all the patterns. Our approach empowers ECO tasks to streamline
the analysis by only focusing on the chosen patterns, which could
reduce the time required for IR drop signoff.

2 BACKGROUND
2.1 Dynamic IR drop
Dynamic IR drop refers to the voltage drop in the PDN during
transistor switching. When numerous cells switch concurrently
at a high frequency, a higher current is pulled through the PDN,
resulting in a fluctuating higher-voltage drop. Thus, dynamic IR
drop significantly impacts the timing and reliability of circuits. Dy-
namic IR drop analysis focuses on the design’s power management,
timing optimization, and the effect of power supply noise. In this
work, we consider dynamic IR drop.

2.2 ML model: eXtreme Gradient Boosting
eXtreme Gradient Boosting (XGBoost) [12] is a machine learn-
ing model for supervised learning problems, e.g, classification and
regression. It is an ensemble learning method that combines the
results of multiple decision trees. XGBoost uses a gradient-boosting
framework, which means that it iteratively builds models to reach
the final model. It starts with a simple model and then adds more
complex models to correct the errors made by the previous models.
XGBoost provides a way to assess the importance of different fea-
tures in making predictions, which is valuable for feature selection.

Compared to other types of models, XGBoost can build models
and make predictions more quickly. Additionally, it works well for
tabular data [8]. Thus, we use XGBoost as our ML model.

3 RELATEDWORKS
In this section, we review some related works on IR drop prediction
and address their issues for exploring potential improvements to
enhance the model’s accuracy.

Previous works [3, 4, 10, 11, 13–17] did not consider the package
effect on IR drop prediction. In fact, the IC package is also an impor-
tant factor affecting IR drop. After conducting the same preliminary
experiments associated with the commercial tool, we observed a
notable increase in IR drop when accounting for the package effect,
as compared to when it was not taken into consideration. The main
reason for this phenomenon would be the resistance and inductance
of the package. Therefore, we incorporate this information into the
features of our model in this work.

Although ML-based approaches significantly reduce the time
spent on analyzing IR drop, errors exist in between the predicted IR
drop and the golden IR drop. Therefore, designers could not entirely
rely on the predicted values for IR drop signoff. However, they can
leverage the predictions to identify critical slices (which are smaller
time frames divided from patterns) that are more likely to trigger
instances of high IR drop for speeding up the IR drop analysis
process [13]. Nonetheless, for front-end designers, each pattern has
its specific importance, and selecting some slices arbitrarily from
each pattern is meaningless for just reducing the time cost. Thus,
we present an algorithm designed to choose a reduced number of
patterns, significantly diminishing the time required for executing
IR drop analysis in each ECO process.

4 PROPOSED APPROACH

Figure 1: The overall flow of proposed approach.

The overall flow of the proposed approach is shown in Figure 1.
When a design is completed, designers release patterns for design
signoff. First, we divide the patterns into shorter slices and randomly
select 30% of slices as the training data. We use commercial tools,
e.g., Voltus, to compute the IR drop for the selected slices. Next, we
train the proposed ML model, a two-level XGBoost-based model.

Then, we predict the IR drop for the remaining 70% of slices.
After that, the golden IR drop of the 30% of slices and the predicted
IR drop of the other 70% of slices are the input data of the pattern
selection algorithm. Finally, we preserve patterns that cause high
IR drop, called critical patterns, and discard the other patterns for
the following ECO process.

4.1 Feature Extraction
The proposed model considers two categories of features, instance-
based features and tile-based features, with 56 features in total.

Instance-based features:We use the automatic placement &
routing (APR) tool to obtain the x-coordinate and y-coordinate of
instances. Additionally, we use Voltus to get effective resistance
(Reff) and resistance of least-resistance path (RLRP). Both Reff and
RLRP have three features, which are the resistance at the power
supply terminal, ground terminal, and both. We get bumps’ resis-
tance and inductance from the package information files. Like the
Reff and RLRP, each bump resistance has three features since each
instance has a bump at the power supply terminal and a bump at
the ground terminal. Besides, we use the toggle rate and power
information obtained from Voltus as our features.

Toggle rate helps with timing information, measured as the
average number of signal transitions per clock cycle. There are two
types of toggle rate, toggle rate of the input (𝜏𝑖 ) and output pin (𝜏𝑜 ).

There are three basic types of power consumption in devices,
i.e., internal power (𝑃𝑖 ), switching power (𝑃𝑠 ), and leakage power
(𝑃𝑙 ). Internal power refers to the power consumed by the active
components of a circuit during operation. Switching power, also
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known as dynamic power, is consumed during the signal transition
of circuits. Leakage power is consumed in a circuit in the standby or
idle state. It comes from the small leakage currents in transistors. As
transistor sizes continue to shrink, leakage power has significantly
contributed to overall power consumption.

We also refer to the work [13] and add four power features: total
power (𝑃𝑡 = 𝑃𝑖+𝑃𝑠+𝑃𝑙 ), scaled power (𝑃𝑆𝑐𝑎𝑙𝑒𝑑 = 𝑃𝑖×𝜏𝑖+𝑃𝑠×𝜏𝑜+𝑃𝑙 ),
overlapped-switching power, and overlapped-scaled power, into
the proposed model. Overlapped power is obtained by summing
up the power of the nine surrounding tiles of an instance. Using
this, the model can be trained to learn the local effect of IR drop.

Tile-based features: Tile-based features are converted from
instance-based features. The tile-based features are inspired by
the neighbor cell feature in [15] and the density map feature in
[6]. Powers (𝑃𝑖 , 𝑃𝑠 , 𝑃𝑙 , 𝑃𝑡 , and 𝑃𝑆𝑐𝑎𝑙𝑒𝑑 ) and toggle rates (𝜏𝑖 and 𝜏𝑜 )
are converted to tile-based features in addition to instance-based
features. In this work, each instance’s target tile is based on the
center point of each instance like Figure 2(a).

Each instance includes information from five neighboring tiles
as shown in Figure 2(a), allowing the model to learn the local effect
of IR drop. For the conversion, we sum up the powers and toggle
rates of all the instances in the tile. If there is an instance across
multiple tiles, the value is calculated according to the cross-area
ratio. Figure 2(b) is an example of conversion. We consider only
five neighboring tiles in the same row since empirical experiments
show they are enough to achieve a similar quality as [15] and [6].

(a) (b)

Figure 2: Instance-to-tile conversionmethod. (a)An instance’s
target tile. (b)Example of tile-based feature conversion.

In summary, we use 56 features for an input instance, including
21 instance-based and 35 tile-based features. Since we utilize the
XGBoost model, which operates in a tabular manner for predictions,
the output is the IR drop of the input instance.

4.2 XGBoost Model
We build a two-level XGBoost-based model. We first train an XG-
Boost model as a classifier to distinguish between high-IR and
low-IR instances, where we define the threshold for high IR drop
as 120mV, about 15% of the supply voltage. Subsequently, we train
two XGBoost regressors to predict the IR drop for high-IR and low-
IR instances, respectively. As shown in Figure 3, the testing data
is first passed through the classifier to classify the instances into
high-IR and low-IR instances. Then, the corresponding regressors
are selected to predict the IR drop. The inputs of the three XGBoost
models are the same, i.e., the 56 features.

4.3 Pattern Reduction
Among the simulation patterns, only a few of these patterns are
IR-critical patterns, which can trigger high IR drop. The purpose of
pattern reduction is to identify these IR-critical patterns.

Figure 3: Inference phase of the proposed two-level model.

Figure 4: The flow of pattern reduction.

Figure 4 shows the flow of the algorithm. The labeled and the pre-
dicted IR drop are combined and then input to the pattern reduction
algorithm. First, we calculate the critical instances coverage score
for each non-selected slice, where a critical instance is the instance
whose IR drop exceeds the threshold. The scoring algorithm unifies
the critical instances of the slice with the selected slices. Please
note that an instance may be identified as a critical instance for one
slice but a non-critical instance for the other slices.

Next, we use a greedy approach to select the slices with the
highest scores as candidates. Among these candidates, we choose
the slice that has the most relevance to the selected slices, and
add them to the selected slices. We also update the coverage score
accordingly. We repeat the process until the coverage of critical
instances reaches 90%.

Table 1 shows an example. There are three patterns (1𝑠𝑡 , 2𝑛𝑑 , 3𝑟𝑑 )
and they are divided into 6 slices, shown in Slice column, where
the slice name starting with n means 𝑛𝑡ℎ pattern. The candidate
count is set to 3. In the first iteration, the three candidates with the
highest coverage scores are 1_𝑎, 3_𝑎, and 1_𝑏. Thus, we choose 1_𝑎
in this iteration and the overall score is updated to 50. In the second
iteration, based on the updated scores, the top three candidates
are 3_𝑎, 2_𝑎, and 1_𝑏. Although 3_𝑎 has the highest score, 1_𝑏 is
prioritized since it belongs to the same pattern as the previously
selected slice. Then, the overall score is updated to 70. In the third
iteration, the highest scores are 3_𝑎, 3_𝑏, and 2_𝑎. 3_𝑎, which has
the highest score, is chosen. After these iterations, the overall score
reaches 95, surpassing the threshold of 90, and the algorithm is
terminated. Finally, the selected slices are 1_𝑎, 1_𝑏, and 3_𝑎. Thus,
the chosen patterns are the 1𝑠𝑡 pattern and the 3𝑟𝑑 pattern.

5 EXPERIMENTAL RESULTS
We conducted the experiments on an industrial designwith 3,508,819
instances. There are nine 300ns simulation patterns, which are di-
vided into 76 30ns slices. The supply voltage is 0.9V and the process
technology is TSMC 5nm process. The length and width of a tile are
twice the maximum instance length and width, respectively. The
model is trained with the golden instance IR drop obtained from
Voltus. To evaluate the quality, we used Root Mean Square Error
(RMSE) and Mean Absolute Error (MAE).

5.1 IR Drop Prediction Results
The results are presented in Table 2. In this work, our primary
objective is to decrease the number of simulation patterns rather
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Table 1: An example for pattern reduction.

Slice #Critical
Instance

Iter. 1 Iter. 2 Iter. 3
sc cand. sc cand. sc cand.

1_a 50 50 1 - - - -
1_b 40 40 3 70 3 - -
2_a 25 25 70 2 85 3
2_b 35 35 65 80
3_a 45 45 2 75 1 95 1
3_b 35 35 65 90 2
total coverage score
(0/100, initially) 50/100 70/100 95/100

total chosen slices
(empty, initially) 1_a 1_a, 1_b 1_a, 1_b, 3_a

critical patterns 1, 3

than achieving optimal IR drop prediction results. Nonetheless,
it is essential to obtain reliable IR drop predictions to ensure the
effectiveness of our proposed pattern reduction algorithm. There-
fore, we present our prediction results to demonstrate the utility
of the IR drop information fed into our algorithm, without making
comparisons to previous works.

We used 30% of the slices for training and the other 70% for
testing. To validate whether our model can predict the IR drop
accurately, we attempted different combinations of training and
testing data. For Set A, we randomly selected 23 slices out of the 76
slices as the training data. For Set B, we randomly selected 3 patterns
out of the 9 patterns, and used the slices of the selected patterns as
the training data. Finally, for Set C, we selected 23 slices having a
better balance of high IR drop and low IR drop as the training data.
We repeated the experiments for 5 times and recorded the average
and the best results. For the best results, the MAE is 3.954mV and
the RMSE is 5.462mV. The correlation coefficient is 0.95, which
means that our predicted results are similar to the label.

The total CPU time is about 1 hour, about 1300 seconds for
training, and about 2300 seconds for inference.

Table 2: The result of IR drop prediction by XGBoost.

Design 1 MAE RMSE MaxE MinE

Set A Normal 4.983 6.336 97.185 -139.944
Best 4.970 6.265 88.279 -63.153

Set B Normal 4.356 5.940 105.683 -145.045
Best 4.344 5.854 93.665 -67.404

Set C Normal 3.968 5.556 120.747 -139.504
Best 3.954 5.462 93.486 -67.441

5.2 Pattern Reduction Results
To evaluate the effectiveness of pattern reduction, we establish the
following criteria. We only select up to half of all patterns, and the
total critical instance coverage score of the selected patterns must
be greater than 90%.

Furthermore, for comparison, we use a brute-force algorithm
to identify the golden critical patterns. By calculating the critical

instance coverage score for each possible combination of patterns,
we select the one with the highest score as the golden patterns.

We adjust the number of candidates (N) in the proposed algo-
rithm for the experiments. When the threshold of critical IR drop is
120mV, the golden critical patterns are (1, 2, 3, 7) and (1, 2, 3) when
we set the numbers of selected patterns to 4 and 3, respectively.
Both combinations can achieve the total critical instance coverage
score greater than 90%. The experimental results show that our
algorithm can effectively identify critical patterns. When N is set
to 1, 3, 5, and 7, our algorithm all chooses 11 slices and the same
patterns as the golden critical patterns are chosen. When N is set to
1 or 3, patterns 1, 2, 3, 7 are chosen; when N is set to 5 or 7, patterns
1, 2, 3 are chosen.

For the CPU time of our pattern reduction algorithm, we need
about 600 seconds; but for the brute-force algorithm, it takes 2 hours
to identify the critical patterns. Thus, our algorithm can efficiently
and effectively identify critical patterns for IR drop analysis.

6 CONCLUSION
We propose a two-level XGBoost-based model for IR drop predic-
tion with the consideration of package effect, which improves the
accuracy of IR drop prediction. Additionally, we propose an algo-
rithm to identify critical patterns for saving the time and computing
resources required for IR drop analysis within the ECO flow.
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